

Page 1 12-70

GE14501

Planar Triode

The GE14501 is a high-mu triode of ceramic-and-metal planar construction intended for use as an oscillator or radio-frequency power amplifier in the ultra-high- frequency range. This tube is especially suited for use where unfavorable conditions of mechanical shock, mechanical vibration, and high temperature are encountered. The outline of this device is ideally suited for coaxial type circuitry.

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS						Test Conditions				
					Ef	Eb	lb	Eg	Rk	
	Minimum	Bogey	Maximum	Units	V		Ma	V	Ohms	
Heater Voltage, AC or DC ★	6.0	6.3	6.6	Volts			_			
Heater Current	222	240	258	Milliamperes	6.3					
Plate Current	6.0	9.5	13	Milliamperes	6.3	150			82	
Amplification Factor	65	90	115	•	6.3	150			82	
Transconductance		12500		Micromhos	6.3	100		0		
Grid Voltage, Cutoff		-2.8	-5.1	Volts	6.3	150	0.1			
Direct Interelectrode Capacitances •										
Grid to Plate: (g to p)	1.10	1.25	1.40	pf						
Input: g to (h + k)	1.40	1.75	2.10	pf						
Output: p to (h + k)		0.01	0.16	pf						
Cathode Heating Time				Seconds						
UHF OSCILLATOR SERVICE										
Frequency						. 450		450	Megahertz	
DC Plate Voltage						. 150		250	Volts	
Grid Resistor						.1000	1	1000	Ohms	
Plate Current						10		15	Milliamperes	
Grid Current						5.0		6.0	Milliamperes	
Power Output						.0.85		2.3	Watts	

NOTES

- * The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- Measured at 450 KHz using a grounded adapter that provides shielding between external terminals of tube.

GE14501

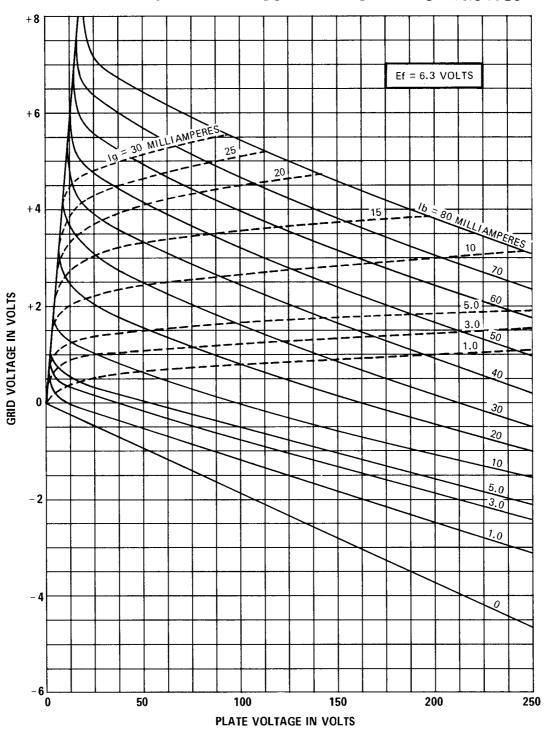
Page 2 12-70

ABSOLUTE-MAXIMUM RATINGS

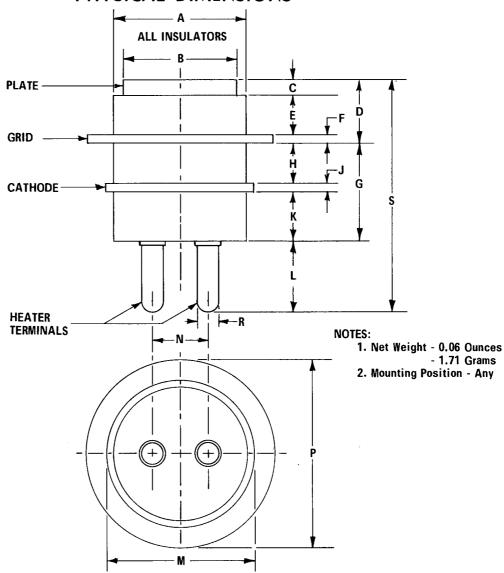
Plate Voltage	Volts
Positive DC Grid Voltage	Volts
Negative DC Grid Voltage50	Volts
Plate Dissipation	Watts
DC Grid Current	Milliamperes
DC Cathode Current	Milliamperes
Peak Cathode Current80	Milliamperes
Heater-Cathode Voltage	
	Volts
Heater Negative with Respect to Cathode50	Volts
Grid Circuit Resistance	Ohms
Envelope Temperature at Hottest Point ♦	۰C
Temperature Differential Between Two Adjacent Electrodes ▲	°C
Mechanical Vibration (20 - 2000 Hz Sinusoidal)	G Peak

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron device of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The device manufacturer chooses these values to provide acceptable serviceability of the device, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and


of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the device under consideration and of all other electron devices in the equipment.


NOTES

- ♦ For specific recommendations concerning higher temperature operation, contact your General Electric sales representative.
- ▲ This assumes no thermal heat sinking to any insulator.

AVERAGE CONSTANT-CURRENT CHARACTERISTICS

PHYSICAL DIMENSIONS

Ref.		INCHES		MILLIMETERS			
	Min.	Nom.	Max.	Min.	Nom.	Max.	
Α			0.328			8.331	
В	0.272	0.275	0.278	6.909	6.985	7.061	
С	0.035	0.040	0.045	0.889	1.016	1.143	
D	0.156	0.165	0.174	3.962	4.191	4.420	
É	0.095	0.099	0.103	2.413	2.515	2.616	
F	0.024	0.027	0.030	0.610	0.686	0.762	
G	0.242	0.250	0.258	6.147	6.350	6.553	
Н	0.096	0.100	0.104	2.438	2.540	2.642	
J	0.024	0.027	0.030	0.610	0.686	0.762	
K	0.120	0.125	0.130	3.048	3.175	3.302	
L	0.165	0.175	0.185	4.191	4.445	4.699	
M	0.357	0.360	0.363	9.068	9.144	9.220	
N	0.130	0.136	0.142	3.302	3.454	3.607	
P	0.477	0.480	0.483	12.12	12.19	12.27_	
R	0.048	0.051	0.054	1.219	1.295	1.372	
S	0.563	0.590	0.617	14.30	14.99	15.67	

TUBE PRODUCTS DEPARTMENT

Owensboro, Kentucky 42301