

F6073

TUBE DE PUISSANCE A REFROIDISSEMENT PAR AIR FORCÉ

Le tube F6073 est une triode à refroidissement par air forcé, spécialement destinée à l'équipement des étages de puissance des émetteurs "Télécommunications" et Radiodiffusion.

Elle convient tant à l'amplification BF en régime téléphonie qu'à l'amplification HF; elle peut alors délivrer une puissance utile de 8 kW à la fréquence de 30 MHz.

L'efficacité du radiateur ainsi que les faibles dimensions du tube rendent possibles des montages compacts et peu encombrants.

CARACTÉRISTIQUES GÉNÉRALES

Filament tunsgtène thorié

Tension de chauffage (V)	7,5 + 7%
Courant de chauffage (A)	100
Coefficient d'amplification	
(pour Ia = 1, $5A$ et $Va = 4000 V$)	30
Pente (mA/V)	
(pour Ia = 1, 5 A et $Va = 4000 V$)	30
Fréquence maximale (MHz)	30
Capacités (pF)	
- Grille/anode	23
- Grille/filament	30
- Anode/filament	1.5

DIVISION TUBES ELECTRONIQUES

VENTE EN FRANCE: 55, Rue Greffulhe - Levallois-Perret (Seine) - Tél.: PER 34-00

EXPORTATION . . . : 79. Boulevard Haussmann - Paris 8° - Tél.: ANJ 84-60

S. A. au Capital de 91.247.000 F Siège Social : 79, Bd HAUSSMANN - PARIS 8°

CONDITIONS LIMITES D'UTILISATION

VALEURS ABSOLUES

Tension d'anode (V) f < 10 MHz	8000*
30> f ≥ 10 MHz	6000*
Courant d'anode (A)	3
Courant continu de grille (mA)	380
Dissipation d'anode (kW)	5

^{*} En modulation par contrôle d'anode, les valeurs de tension d'anode ne doivent pas excéder 80% des valeurs limites indiquées.

EXEMPLES DE FONCTIONNEMENT

AMPLIFICATRICE HF MODULEE - CLASSE B MONTAGE SYMETRIQUE - GRILLE A LA TERRE Valeurs par tube

Tension d'anode (V)	6000
Tension de polarisation (V)	-160
Tension alternative crête de grille (V) (env.)	410
Courant d'anode (A)	2,3
Courant continu moyen de grille (mA) (env.)	300
Puissance de commande (kW) (env.)	0,8
Puissance de sortie (kW)	8
Fréquence (MHz)	28

AMPLIFICATRICE HF - CLASSE C MODULEE PAR L'ANODE

(Conditions en régime de porteuse pour 1 tube)

Tension d'anode (V)	5000
Tension continue de grille (V)	-800
Tension alternative crête de grille (V) (env.)	1000
Courant d'anode (A)	2
Courant continu moyen de grille (mA) (env.)	375
Puissance utile (kW)	7,8
Fréquence (MHz)	30

CONSIGNES POUR LA MISE EN PLACE

ET LA MANUTENTION

On réduira les risques de détérioration accidentelle du tube en observant les consignes suivantes :

- l° Le tube doit être conservé dans son emballage de livraison jusqu'à l'utilisation.
- 2° Eviter les chocs et les secousses.
- 3° L'emploi exclusif des connexions spéciales, n° 21181 pour le filament et n° 22280 pour la grille, évite une élévation de température dangereuse pour les scellements.
- NOTA: Lorsqu'un nouveau tube est mis en service, il est vivement recommandé de procéder à un resserrage des connexions filament après 24 heures de fonctionnement.

CONSIGNES D'UTILISATION

MISE SOUS TENSION DU FILAMENT

- Le courant de pointe à l'enclenchement de la tension filament doit être inférieur à 200 A. La limitation peut se faire en insérant dans le primaire du transformateur de chauffage une thermistance appropriée.

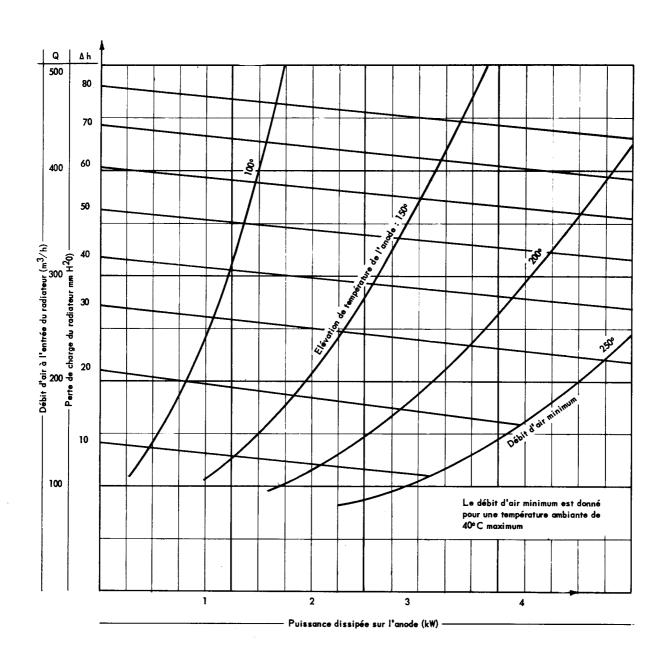
La résistance à froid du filament est d'environ 0,009 Ω .

Pour obtenir une durée maximum du tube, la tension mesurée aux bornes du filament doit être de 7,5 volts. Les variations éventuelles de la tension filament doivent être maintenues dans les limites de + 7%.

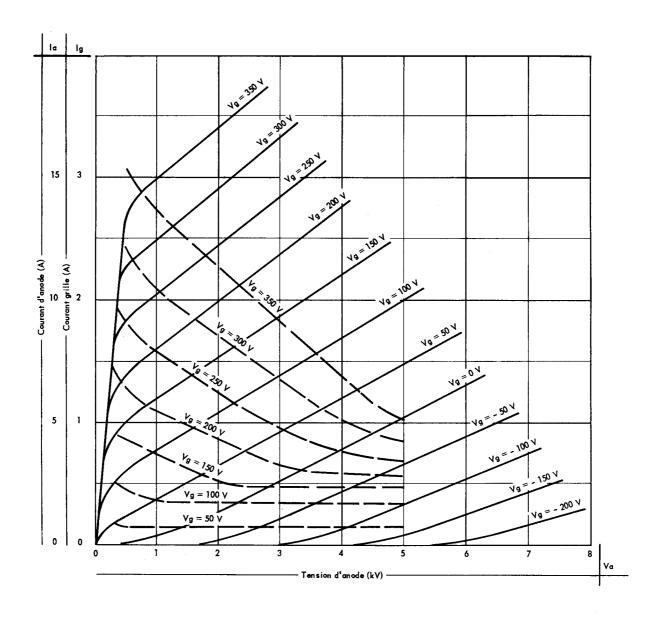
APPLICATION DE LA HAUTE TENSION

La haute tension ne peut être appliquée que 30 secondes après l'enclenchement de la tension filament.

REFROIDISSEMENT

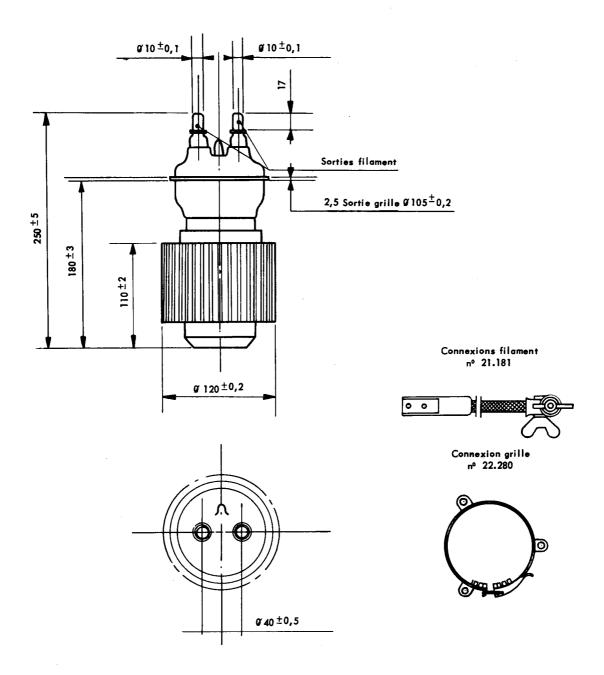

Les courbes caractéristiques de refroidissement donnent pour une dissipation anodique donnée le débit d'air minimum à assurer, la température ambiante étant inférieure à 40°C.

Les courbes de pertes de charge dans le radiateur en fonction du débit d'air et de la dissipation d'anode permettent de précalculer les caractéristiques du ventilateur.


Le sens de circulation d'air de haut en bas (air forcé à l'aspiration) est conseillé. Plus silencieux, ce procédé assure un meilleur refroidissement de la calotte de verre et des connexions.

Il est indispensable que la circulation d'air soit établie avant la mise sous tension du filament.

En cas d'arrêt accidentel du refroidissement du tube, un dispositif de sécurité doit couper immédiatement les tension appliquées.



CARACTÉRISTIQUES MOYENNES Ia-Ig/Va

ENCOMBREMENT

Dimensions en mm,

